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[1] The Jet Propulsion Laboratory/University of Southern California Global Assimilation
Ionospheric Model (JPL/USC GAIM) uses two data assimilation techniques to optimally
combine ionospheric measurements with the physics model: a sparse, traditional
Kalman filter to estimate the three-dimensional density state, and a four-dimensional
variational approach (4DVAR) to estimate ionospheric drivers such as the equatorial E �
B drift or neutral winds. In this paper we study a specific implementation of the JPL/USC
GAIM Kalman filter (single ion, low-resolution, and input data from 200 ground
GPS sites) and validate its global accuracy over 137 days by comparisons to independent
GPS slant total electron content (TEC) observations (‘‘missing site’’ tests) and
independent JASON vertical TEC observations. The assimilation accuracy is robust with a
slant TEC spatial prediction RMS error of 4 TECU (Total Electron Content Unit, 1 �
1016 e-/m2) on average and a vertical TEC JASON RMS error of 7 TECU. Removing what
appears to be a positive �4.4 TECU bias from the JASON observations, we obtain an
improved performance of 5.3 TECU over the oceans. Comparisons with a single, thin
shell global ionospheric map model and the International Reference Ionosphere and Bent
ionospheric models are also provided.

Citation: Mandrake, L., B. Wilson, C. Wang, G. Hajj, A. Mannucci, and X. Pi (2005), A performance evaluation of the operational

Jet Propulsion Laboratory/University of Southern California Global Assimilation Ionospheric Model (JPL/USC GAIM), J. Geophys.

Res., 110, A12306, doi:10.1029/2005JA011170.

1. Introduction

[2] Ionospheric imaging has risen in importance to an
increasing need by civilian single-frequency GPS users for
high accuracy navigation [McCoy, 2003], a growing aware-
ness of storm-time phenomenon in the ionosphere enabled
by global studies using multiple satellite data sources [Ho et
al., 1996; Coster et al., 2001], and routine ionospheric
specification needs for military over-the-horizon communi-
cation and detection [Reinisch et al., 1997], among other
applications. The atmospheric weather prediction commu-
nity has already developed mature data assimilation meth-
ods using optimal estimation schemes which produce the
remarkable successes of modern weather prediction up to
five days in advance with impressive accuracy [Kalnay et
al., 1998]. The ionosphere, however, presents several
unique difficulties that challenge conventional data assim-
ilation techniques: the various solar and thermospheric

drivers of the ionosphere are difficult to measure and
dominate the ionospheric behavior; the ionosphere is a
complex system consisting of seven major ion species
coupled to the underlying thermospheric neutral medium;
and data availability across the globe is limited (good data
coverage in some midlatitude regions over land but sparse
coverage in the complex equatorial region and over the
oceans). Together, these difficulties make the daily opera-
tion of an effective ionospheric monitoring system quite
challenging.
[3] Numerous models have been developed to address the

need for ionospheric nowcasting (current or slightly latent
specification) and forecasting (predicting beyond the time of
current data availability). Some ionospheric models, such as
the International Reference Ionosphere (IRI) [Bilitza, 2001],
Bent [Bent et al., 1972], SAMI2 [Huba et al., 2000], and the
Ionospheric Forecast Model (IFM) [Schunk et al., 1998] use
relatively few scalar inputs such as solar activity to estimate
the drivers of the ionosphere and then predict the current
state using either empirically derived relations or physical
models propagating through time. These models often
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incorporate complicated models of neutral densities (MSIS;
Hedin [1991]), neutral winds (HWM; Hedin et al. [1996]),
electric fields, and auroral convection patterns and precip-
itation. While these models have improved, they still yield
answers which can be significantly in error, especially when
storms or fine structures are present which are not captured
in the models. The arrival of global, continuous data sets
from diverse sources such as over 1500 GPS receivers
across the globe, satellite–satellite crosslink occultations,
digisonde profiles, in situ satellite density measurements,
and ultraviolet (UV) airglow measurements from low-Earth
orbiters fueled the need to create other models which are
entirely data-driven such as the persistence-driven thin shell
model GIM [e.g., Mannucci et al., 1998] and various
tomographic codes such as MIDAS [Mitchell, 2001],
EDAM [Angling and Cannon, 2004], and others [e.g., Rius
et al., 1997]. Others, such as IDA3D [Bust et al., 2004],
attempt to incorporate data and ionospheric physics by use
of models to define the a priori state of the ionosphere. In
spite of high success in regions with excellent data cover-
age, these techniques are limited in forecasting ability.
Newly emerged assimilative models involve first-principles
physical models and yet also take in data, like the tomo-
graphic models, in an attempt to merge the benefits of both
approaches. JPL/USC GAIM [Hajj et al., 2000; Pi et al.,
2003; Hajj et al., 2004; Wang et al., 2004; Pi et al., 2004],
USU GAIM [Schunk, 2002; Scherliess et al., 2004], and the
Fusion Numeric’s assimilation model [e.g., Khattatov et al.,
2004] have all been developed to address this need with
significant variations in the forward modeling and data
assimilation approaches.
[4] Creating an ionospheric data assimilation model is a

complex endeavor that involves many approximations and
trade-offs: what physics to include, what physics to pur-
posely exclude, what driver models to use [Pi et al., 2003],
what coordinate system and grid to use for the physics
solver, what grid to use for the assimilation process, and
several other choices regarding the optimization process. As
the full, formal Kalman Filter is impossible to implement on
a grid with sufficient resolution to properly specify the
ionosphere, multiple approximations can be employed to
help reduce the number of required operations without
sacrificing important physics [Hajj et al., 2004; Wang et
al., 2004]. Selection of grid shape and resolution comes
with advantages and disadvantages when considering data
coverage, inherent data resolution, resolving ionospheric
structures, simplification of the underlying plasma physics
equations, and avoiding over-fitting oscillations. There is a
need for statistically significant validation covering a wide
range of geophysical conditions to understand the advan-
tages and disadvantages of the various approaches. To
answer this need, we have developed a process to automat-
ically generate validation results on a continuing basis so
that we can begin to address these important questions.
What are the relevant tradeoffs for algorithm complexity
versus runtime? Do we understand the limitations of not
including the most complex features? Many of the more
sophisticated techniques require ‘‘tuning’’ of large numbers
of parameters, a process that can be as complex and time-
consuming as creating the original model. In addition, as we
will argue, the most appropriate value for many of these
parameters is not a value that corresponds directly to a

physical process in the ionosphere, but rather a value chosen
to balance physical reality and model requirements. Stated
another way, the modeling and data assimilation procedure
only approximately reproduces the physical process, and
therefore modeling considerations may play as significant a
role in parameter determination as physical interpretation.
[5] In this paper, we assess an operational version of the

JPL/USC GAIM model that uses minimal settings (minimal
resolution, off-diagonal covariance achieved by Gaussian
smoothing, etc.). These baseline results will not serve to
demonstrate the ultimate capability of our system; instead, it
will define a minimum performance level which more
sophisticated approaches should be able to match and
exceed and a basis upon which rigorous comparison may
be made. As we discuss the results, it will be shown that
even in the simplest mode of operation, the JPL/USC GAIM
is surprisingly accurate when validated using independent
model output (IRI, Bent), spatial prediction or withheld-site
tests, and independent data sources (TOPEX/JASON). In
future studies, various JPL/USC GAIM model improve-
ments will be measured against the baseline presented in
this paper for increased accuracy and run time penalty. This
code version is operationally used at JPL to compete with
GIM solutions with the intention of eventually replacing
GIM’s functions while yielding additional information such
as profiles and ionospheric drivers.
[6] The paper is structured as follows. In section 2, we

describe the JPL/USC GAIM model and the parameter
settings used. Section 3 discusses the input data sources
used for our model. Section 4 describes the performance of
our model via withheld-site tests and postfit analysis. In
section 5, we explore the GAIM model’s predictive ability
over the oceans using independent JASON data. Last,
section 6 summarizes our findings and briefly describes
our future investigations.

2. Model and Parameters

[7] We will only briefly describe the JPL/USC GAIM, as
a thorough treatment already exists in the literature [Hajj et
al., 2000; Pi et al., 2003; Hajj et al., 2004; Wang et al.,
2004]. JPL/USC GAIM runs on a single CPU and typically
requires between 1 and 4 hours to complete an entire day of
assimilation analysis. The architecture we use focuses
around processing a single day at a time; other architectures
for continuous, real-time operation also exist with latencies
of as little as 5 min. The basic function of our daily GAIM
run can be visualized in Figure 1. An initial state estimate of
the ionospheric density is formulated by running the physics
model without any input data for one day prior to the
specified day to permit any initial transients to attenuate,
although for an operational system one could use the last
state of the previous day as the initial state for the next.
Besides the initial density state estimate, one needs an initial
covariance estimate (the uncertainty in each density value
along with the correlation between grid elements or voxels).
Selecting this initial covariance can be very complicated, as
it represents an amalgam of physical scale lengths in the
ionosphere in all three dimensions and grid resolution
smoothing considerations. Covariance ‘‘bumping’’ to pre-
serve the flexibility of the Kalman Filter’s solution (adding
process noise Q to the error covariance estimate to take
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model uncertainties into consideration and to enhance filter
response time to changing ionospheric conditions) is
achieved via a simple (A + B n)2 formulation in which A
and B are constants (1e10 1/m3 and 0.2 respectively) and n
is the density within the voxel in question. In this analysis,
we select a simple, diagonal Gaussian initial spatial covari-
ance with standard deviations to match the resolution of our
grid and zero off-diagonal components. This initial state
(density + covariance) is then advanced via the Transition
Matrix (the physics model or forward model) to obtain a
forecast (predicted) density state. The physics model
requires solar F10.7 flux and planetary magnetic Ap indices
to provide empirical flux inputs. These indices are obtained
in real time from a web service (see http://sec.noaa.gov/
ftpdir/indices/) and saved to provide a time series for past
days. External models produce dynamical drivers such as
E � B drifts, thermospheric composition and winds. The
observation operator is employed to then map the estimated
density states into predicted slant TEC observations, and
these are differenced to all incoming data at that time to
form the Innovation Vector (residuals). The traditional
Kalman filter works to reduce these residuals in a least
squares sense over the entire grid at once, weighted by the
uncertainty in each voxel and the uncertainty in the incom-
ing data sources. Finally, the output state resulting from the
Kalman filter update is saved for the user and fed back into
the physics model for the next iteration. After each time
step, we discard off-diagonal covariance information to
avoid computation time and memory requirements. We
are thus utilizing a suboptimal filter in this setup. The
JPL/USC GAIM model is fully capable of preserving off-
diagonal covariance; however, it is interesting in this initial
benchmark to measure the accuracy obtained without this
costly requirement. In this case, the day-length runs were
performed 3 days after the date of interest to ensure
maximal GPS data was available due to station latency.
However, other implementations at JPL also perform with a
1 hour and 5 minute latency.

[8] In this validation effort, we used 18,624 voxels
(volume elements) to comprise the whole of the Earth’s
global ionosphere up to 1500 km altitude. A mean voxel
size for this arrangement yields 5� latitudinal extent, 15�
longitudinal extent, and 80 km altitude extent (Figure 2).
The effective resolution and smoothness of the density
state are enhanced by the introduction of a Gaussian
smoothing process into the observation operator. The
altitude extent of each voxel is a function of height, to
follow the exponentially decreasing plasma density. Our
coordinates are specified by a classic p-q-l formulation
along tilted magnetic dipole field lines (constant p is
along the magnetic field, l in magnetic longitude direc-
tion, and p perpendicular to both) described in the work
of Pi et al. [2003] in detail. Note that the use of low
resolution combined with a magnetic field aligned grid
produces unusual ‘‘spiky’’ high-altitude boundaries. In the
present runs, our grid is set to span altitudes from 120 km
to 1500 km which should capture between 90 and 99%
of the plasma depending on the ionosphere–plasmasphere
boundary layer which is between 500 km and 1500 km
depending on day/night and storm conditions [Schunk and
Nagy, 2000].
[9] The JPL/USC GAIM implements the ‘‘Band

Limited’’ Kalman approximation [Hajj et al., 2004] which
simply means a nearest neighbor covariance approxima-
tion has been enacted to reduce the number of nonzero
covariance terms. The resulting sparse matrix transforms
the intractable manipulation of an 18,624 � 18,624 �
350 � 106 element covariance matrix into one with �
500,000 elements (given 3 neighbors in each direction).
For the minimal setting operation investigated here,
however, we have set all nondiagonal elements of the
covariance to zero, resulting in a covariance of only
18,624 elements.
[10] As the grid resolution is low, a technique of Gaussian

smoothing has been implemented within the observation
operator so as to: increase the effective resolution, enable
the model to smoothly represent structures that are some-
what smaller than the discrete voxel sizes, include an
effective off-diagonal covariance, and produce a smooth
retrieved density field. In this study, the Gaussian function
was defined as having a sigma of 5� latitude, 15� longitude,
and 80 km altitude to match the average grid voxel size.
Incoming data from GPS receivers is modeled as a straight
line ray path, piercing a series of individual voxels. The
Gaussian smoothing introduces fixed-length, density-inde-
pendent correlations between neighboring voxels that result
in adjacent voxels also being affected by an observation.
Effectively, the smoothing introduces off-diagonal correla-
tions similar to a time-dependent off-diagonal covariance.
Higher resolution runs would permit off-diagonal covari-
ance to perform a similar function, at the expense of an
increase in runtime due to both the higher number of grid
parameters required and the off-diagonal covariance in the
Kalman update.
[11] Finally, a single species of ion (O+) is used in the

model runs presented in this paper, as multiple ions will be
the subject of future analysis and validation. Employing a
single ion species permits great simplification of the
Kalman filter implementation via convenient calculations
in the forward model as well as reducing potential difficul-

Figure 1. The Kalman GAIM consists of the output of a
physics model and incoming measurements fused together
in the Kalman filter, the results of which are fed back into
the physics model for the next step. The physics model
advances the current state (incoming from below) in time to
the forecast state. This forecast state is then merged with
data to yield the current best estimate of density and
covariance for every voxel in the grid.
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ties regarding sensitivity among multiple ion species to a
single input data type such as slant TEC from GPS.

3. Data and Ground Stations Used

[12] We examined automated runs covering 137 days of
data ranging from 06/01/2004 to 11/08/2004. This period
was selected arbitrarily and was examined only after the
daily GAIM runs were completed; no intentional selection
was utilized so as to resemble a realistic operational
environment. Some days are missing due to otherwise
irrelevant disk storage limitations between 09/26 and
10/09. Overall, the available data amounts to 45 million
slant TEC (STEC) GPS observations from 313 GPS receiver
stations, with an average of 330,000 STEC observations
from just under 200 sites per day. Each station typically
produces between 1500 and 3000 observations per day
(5 minute data). The particular sites used in each run can
vary day to day due to station malfunction or latency
exceeding three days, in which case alternate sites are pulled
in as necessary. In Figure 3, stations in green were present
90–137 days out of the total of 137, blue were present 30–
90 days, and red 0–30 days. It is important to notice the
obvious scarcity of data over the oceans; also the center of
Africa is virtually unrepresented, and the receivers in South
America were of substandard reliability. In general, a lack of

Figure 2. Global grid distribution: 18,624 voxels comprise the ionospheric modeling volume. The use
of magnetic coordinates (pql) yields exotic voxel shapes and arrangements as they tile along the field
lines.

Figure 3. Distribution and performance of the 313 GPS
receiver stations used (200 per day for 137 days). Stations
are color-coded to show the total number of days they
contributed to the data set. A well-surrounded, rarely used
station likely indicates a substitute station for a rare dropout
of a trusted site, whereas an isolated site is likely
experiencing problems as it would always be selected if
possible. Purple circles represent stations withheld for
prediction analysis
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quality data and sparse coverage prevails for most of the
equatorial region, where the ionosphere is highly structured.
[13] All data in this paper were taken from the daily

single-shell Global Ionospheric Mapping (GIM) run product
[Mannucci et al., 1998; Iijima et al., 1999], with data
filtering and bias removal already performed by GIM’s
‘‘front end’’ processing. Such filtration is absolutely crucial,
as improperly leveled GPS data or corrupted pseudo-range
measurements introduce noise that obscures features of the
ionosphere. Further, a postfit outlier check was imple-
mented by two successive GAIM runs, removing any data
found to have more than an 80 TECU (Total Electron
Content Unit, 1 � 1016 e-/m2) postfit residual. The chief
culprits of such anomalously bad GPS TEC data were
severe station multipath and occasional erroneous behavior
by Ashtech receivers in which an arbitrary (usually large)
constant is added to the pseudo-range values for an entire
satellite arc. From the entire 45 million observations, 6447
observations were rejected due to postfit filter failure
(0.014% rejection rate). Significantly more were removed
prior to this by the GIM front end for anomalously short
arcs due to satellite lock loss. All of the data accepted by
GIM and utilized by its solution also enters GAIM with the
exception of our spatial prediction study for which we chose
five reliable stations around the world (see Table 1) and
excluded their data from GAIM only as a means of
validation.

4. GAIM Slant TEC Postfit and Spatial
Prediction Residuals

[14] The most direct measure of a model’s success at
fitting data is the postfit residual, the measure of remaining
discrepancy between input data and the model’s prediction
of that same data after assimilation. These residuals can be
plotted into histograms to examine their distribution and
their RMS taken to characterize the overall magnitude of the
global error. Postfit residuals in no way suggest the accu-
racy of the model, especially in a predictive sense; instead,
they measure whether a sufficient number of degrees of
freedom were available to properly fit the data. We also
compared various nonassimilative models and single-shell
GIM as a useful point of reference, since these models are
optimized for entirely different uses.
[15] Figure 4 shows the overall RMS of residuals per day

for GIM postfit (GIM answer – input data after run), GAIM
postfit (GAIM answer – input data after run), IRI2000, and
our five GAIM prediction sites (GAIM answer – withheld
data not assimilated). The GIM postfit values show excel-
lent ability to fit the ionosphere with daily RMS residuals
varying between 1.5 and 3.7 TECU with a mean of
2.1 TECU. GAIM postfit manages to outperform GIM

postfit slightly, varying between 1.4 to 2.5 TECU with a
mean of 1.6 TECU. This is in accordance with the obser-
vation that even at this coarse resolution GAIM has more
independent parameters to adjust along a slant ray pathray
path (�63) than does GIM (�16). However, this is still
significant as proof that the data assimilation process is
being completed successfully, and indeed in regions of high
receiver density such as North America and Europe multiple
ray pathray paths share sufficiently small numbers of
density voxels to create the potential for under fitting. Also
plotted for reference is the IRI2000 model’s climatological
estimate (no data input) which shows an oscillation of
accuracy anticorrelated with the daily F10.7 varying be-
tween 5.6 and 15.8 TECU with an average of 7.9 TECU.
[16] The ‘‘GAIM Predict’’ entry represents the observed

residuals from only the five selected prediction sites. Note
that this is inherently a much smaller data set (by a factor of
�40), and thus we expect larger day-to-day fluctuation.
Still, we observe RMS variation between 1.8 and 7.1 TECU
with an average of 2.9 TECU. This level of accuracy is
somewhat optimistic, as many of the prediction sites chosen
for their reliable delivery are also near other sources of data,
thereby assisting overall prediction accuracy. Later we will

Table 1. GPS Receiver Stations Used for Spatial Prediction

Station
Geomagnetic
Latitude

Geomagnetic
Longitude

Magnetic
Latitude

Magnetic
Longitude

Days
Used

Mean
Daily
Data

Total
Data

BOGT 4.6 285.9 15.6 �3.3 137 2337 320,207
MKEA 19.8 204.5 20.4 �88.6 134 2190 293,426
TIDB �35.4 149.0 �43.4 �133.9 137 2285 313,098
WES2 42.6 288.5 53.5 �0.7 128 1786 228,628
WTZR 49.1 12.9 49.0 96.5 136 2207 300,137

Figure 4. Overall performance and solar parameters
versus UT. Each point in the top graph represents the
RMS of all Slant TEC measurement residuals for all stations
on a single day. The bottom shows the F10.7 and Ap indices
for comparison. Note the 24.7-day periodicity due to the
solar rotation period.
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utilize JASON measurements to assess prediction accuracy
over the oceans where this weakness is not present.
[17] The lower panel of Figure 4 shows the solar flux

index F10.7 and the planetary magnetic index Ap used as
input to GAIM. A major Ap disturbance occurred on 25 and
27 August as well as on 8 November, the last day of study.
The F10.7 dramatically shows the 24.7 day mean rotation
rate of the Sun. Thus the data sample contains a mixture of
active solar conditions (high F10.7), low solar activity (low
F10.7), active magnetic storms (high Ap), and generally
quiet times (low Ap).
[18] We now turn our attention to the latitudinal depen-

dence of postfit. Each point in Figure 5 represents the RMS
of postfit or prediction residuals for a specific site for the
entire period of study. The density of data on the right-hand
side of the graph reflects the dominance in GPS ground
coverage in North America and Europe. In the relatively
smooth and quiet midlatitude ionosphere we see GAIM and
GIM postfits are roughly equivalent, as both models possess
sufficient degrees of freedom to well fit the data. However,
as we near the magnetic equator, we observe a significant
deviation between GIM and GAIM postfits of �2 TECU.
This is presumably due to the well known difficulty for thin
shell models to accommodate the complex features of the
equatorial anomaly, especially the northern and southern
anomaly peaks. As for the spatial prediction sites (shown as
large green diamonds), the prediction capability is quite
robust for the data-dense Northern Hemisphere as well as
the moderately well covered Australia in the southern
midlatitude, roughly matching the postfit error. However,
the prediction station near the equator experiences difficulty
roughly equivalent to GIM’s postfit error of �5 TECU. This
demonstrates the level of error that can result from depriv-
ing the assimilation run of an isolated site in an equatorial
region and thus depending entirely on physics-based diffu-
sion and convection to fill in the data hole. More advanced
techniques such as driver estimation via four-dimensional
variational approach (4DVAR; Pi et al. [2003, 2004]) or
Extended Kalman could be employed to improve this
climatological data filling.
[19] A histogram of all 137 days slant TEC residuals,

both from postfit and prediction analysis, are examined in

Figure 6. The histogram of GIM and GAIM postfit
residuals are both well-defined Gaussian distributions
widths with overall RMS values of 2.5 and 1.7 TECU
respectively, indicating GAIM performed significantly
better at data fitting than GIM. GAIM Prediction is also
remarkably good with an RMS of 4.0 TECU. IRI,
without the ability to assimilate data, achieves an
RMS of 9.3 TECU and is biased low by 1.9 TECU.
Note that to plot ‘‘GAIM Predict’’ on the same histo-
gram, a scaling factor corresponding to the ratio of postfit
observations to predict observations (40.2) was used to
overlap the graph axis. It is interesting to note that the
plasmaspheric component has been assimilated into the
simulation despite the use of O+ exclusively. This will
not manifest in comparisons of slant TEC, as plasma-
spheric bias is therefore in both the observation and the
assimilation result. One would expect profiles to be
modestly affected, however, with slightly increased
nmF2 such that the integrated TEC matches the iono-
sphere plus plasmasphere.
[20] To investigate the dependence of accuracy on eleva-

tion and local time, we binned the postfit and prediction
slant TEC residuals versus the elevation angle of the STEC
ray pathray path and the local time of the GPS receiver,
generating Figure 7. The top two panels display the RMS
Residual for postfit (left) and prediction (right). As
expected, a region of higher RMS residuals is clearly
apparent in the postfit plot (left) between 1300 and
1600 LT at all elevations, corresponding to the daytime
equatorial anomaly, while the lowest RMS residuals occur
between 0400 and 0900 LT, a period that represents no and
low solar irradiance (nighttime and morning, respectively).
The corresponding prediction plot (right) shows the same
region of best performance (0400–0900 LT), but difficulty
in prediction at low elevations is much more broadly
distributed in the entire noon-to-midnight sector, with larger
residuals occurring around 2000 LT. A possible explanation
for the different behavior between prediction and postfit
residuals is as follows. The JPL/USC GAIM grid can

Figure 5. Overall performance versus magnetic latitude.
Each point represents the RMS of all Slant TEC measure-
ment residuals for a single site versus the magnetic latitude
of that site. Note that GAIM separates itself from GIM
mostly near the equatorial region.

Figure 6. Distribution of slant TEC residuals. In order to
plot the prediction site GAIM results meaningfully beside
the postfit results, a scaling factor (40.2) equal to the ratio of
the total number of postfit and prediction measurements was
used.
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accommodate the spatial gradients in the real ionosphere,
but extrapolation in space is hampered by the unmeasured
gradients in the postnoon to midnight periods. It is reason-
able that spatial prediction is worst around 2000 LT, as the
day night boundary and the associated increase in spatial
gradients hinders spatial prediction.
[21] The mean residuals, shown in the lower two plots,

also exhibit an interesting LT behavior. On average for
the postfit (left) case, we are underestimating high eleva-
tion tracks by as much as 0.7 TECU while overestimating
low-elevation tracks by a similar amount, especially
between 0500 and 0900 LT. Although noisier due to
lower statistics, the prediction plot (right) shows similar
behavior. Superimposed upon this general trend is an
over-estimation of the ionosphere at low elevations near
dawn, followed by underestimation near dusk. This is
likely due to limited longitude resolution in the grid,
resulting in a blurring across dawn/dusk terminators, a
fact that likely also contributed to the increase in RMS
Prediction Residual (upper right) near 2000 LT. Higher

resolution should reduce this difficulty, although even in
this lowest resolution setting a mean estimation error of
less than 0.6 TECU results.

5. GAIM Prediction Over Oceans Versus
JASON Satellite

[22] The JASON-1 Satellite [Menard and Fu, 2003]
follows the TOPEX [Fu et al., 1994] satellite’s success at
determining the vertical TEC between the spacecraft and the
surface of any substantial body of water beneath it to within
a single, constant bias. This calibration step to remove the
ionospheric delay is crucial to the satellites’ primary mis-
sion to study ocean surface height; however, it also provides
a convenient source of validation data for GAIM. This is a
particularly formidable validation goal, as JASON provides
TEC data only over open water, precisely where GPS
receiver data is rare. Therefore the direct overlap between
JASON vertical TEC tracks and GPS ray pathray paths will
only occur near shorelines

Figure 7. Upper plots are RMS STEC residual, lower plots mean STEC residual. Left plots are postfit
residuals, right plots are spatial prediction residuals. Each bin is arranged by local time and elevation of
the ionospheric pierce point (IPP) of the slant ray path ray path. Note that for increased contrast, some
unused regions of the RMS color map have been blackened artificially. All color map scales are unique to
their respective plot.
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[23] Figure 8 shows the accumulated error distribution
between GAIM and JASON VTEC for the entire 137 days.
Immediately we observe an overall bias: JASON VTEC is
clearly higher than the GPS-driven GAIM and GIM models.
In light of the prior evidence, it is reasonable to estimate a
mean bias and use the standard deviation of the ‘‘model
minus JASON’’ vertical TEC differences as a measure of
GAIM vertical TEC accuracy. The GAIM and GIM stan-

dard deviations are 4.6 and 4.3 TECU, while Bent and
IRI95 (note this is not the same IRI model as previously
compared with) are 5.9 and 7.0 TECU, respectively. The
fact that GAIM’s VTEC performance is comparable to
GIM’s is noteworthy, since GIM has been explicitly tuned
to yield a smooth VTEC map using the sparse global GPS
coverage, while GAIM models a 3D profile and estimates
vastly more parameters. The mean GAIM residual is
4.4 TECU, while that for GIM is 3.0 TECU. This gives
some suggestion of the JASON bias, and we chose to
use 4.4 TECU as the JASON bias for future computations.
This value disagrees with the results of Ping et al. [2004]
(�1.6 TECU) but supports the work of Hernandez-Pajares
[2004] (�5 TECU).
[24] We expect the best agreement between GAIM and

JASON in regions closer to GPS receiver data. Plotting the
distance between a point on the JASON track and the
nearest GPS ray pathray path ionospheric pierce point
(IPP) within the last hour, we obtain Figure 9. Collecting
the GAIM–JASON observations into 50 km bins, we plot
the number of observations in each bin, the RMS of those
observations, and their mean. On the top plot, we observe a
‘‘most common’’ distance of 300 km and a mean distance of
1010 km. The exponentially decreasing tail indicates that,
for the distribution of GPS sites used, it is difficult to obtain
observations sufficiently far from any GPS data at all, with
negligible observations occurring beyond (�30�)�3500 km
away from any GPS data. We observe in the lower plot of
Figure 9 a clear dependence on GAIM accuracy versus
proximity of input GPS data.
[25] Investigating the relationship between GAIM pre-

dictions versus JASON, we now examine the latitudinal

Figure 8. GAIM–JASON residual histogram. A direct
comparison (including JASON bias) of GAIM and JASON
vertical TEC. Note the clear bias in JASON VTEC.

Figure 9. JASON distance to nearest GPS data. The top
graph shows the number of JASON observations versus
distance to the nearest GPS data pierce point with a most
common distance of 300 km and a mean distance of
1010 km. The bottom graph shows the mean and RMS of
GAIM–JASON VTEC residuals with and without a bias
correction of 4.4 TECU. Notice that the 4.4 TECU bias also
makes the mean disagreement between JASON and GAIM
become near zero at small distances.

Figure 10. Biased GAIM–JASON error versus latitude.
Note that most JASON measurements are in the Southern
Hemisphere due to larger ocean surface, with higher RMS
error due to greater distance to GPS data. The plasmasphere
is visible as a latitude-dependent mean discrepancy between
GAIM (GPS data) and JASON (low orbit data).
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relationship in Figure 10. In the top panel, we see that
significantly more JASON observations lie in the Southern
Hemisphere (larger oceans) where GPS data is sparse. This
data sparseness may explain the latitudinal dependence of
increased RMS error in the south as seen in the lower graph.
The bias between JASON and GAIM is seen in the mean
versus latitude at the bottom of the figure, which roughly
agrees with the estimate of 4.4 TECU near the equator but
increases as JASON approaches the poles. One possible
interpretation of this interesting topology is the presence of
a plasmasphere sitting above JASON. As we move toward
the poles, between 4 and 6 TECU less plasma is observed
by GPS than near the equator, helping to explain the
increasing differential. Such an interpretation is supported
by the modeling work of Gallagher et al. [1988]. If this
interpretation is correct, an even higher JASON bias of �6–
7 TECU is suggested.
[26] The precise global location of these discrepancies

between JASON and GAIM are of interest. Removing our
estimate of JASON’s bias, we graph the RMS of GAIM–
JASON into bins each of 4� by 4� across the globe resulting
in Figure 11. Note the strong agreement (2 to 3 TECU
RMS) in the Atlantic ocean in the smooth midlatitude
region between densely covered Europe and North Amer-
ica. The Pacific Ocean near Asia also shows similar
agreement. However, RMS error can exceed 10 TECU in
the center of the Pacific ocean in the Southern Hemisphere.
Both large regions of high discrepancy also lie on the
magnetic equator where the ionosphere is highly structured
and peaks in the equatorial anomaly region. This confirms
our expectation of where GAIM is experiencing difficulty:
the major challenge of predicting into regions of sparse data
coverage comes from regions of large gradient and high
instability.

6. Summary and Conclusions

[27] Running the JPL GAIM model with low resolution,
diagonal covariance, single ion, and Gaussian smoothing
off-diagonal covariance produces good agreement when

validated using both missing-site spatial prediction and
independent JASON VTEC measurements over the ocean.
Postfit residuals for slant TEC observations for over
300 GPS receivers yielded a total RMS of 1.7 TECU, while
missing-site spatial prediction tests yielded an RMS of
4.0 TECU. Challenging comparison with JASON’s vertical
TEC over the world’s oceans yielded at first an unfavorable
6.9 TECU RMS residual; however, study suggests at least a
�4.4 TECU bias to the JASON observations. Removing
this bias reduces our overall vertical TEC RMS to
5.3 TECU, with the majority of error predictably occurring
over the largest spans of ocean.
[28] In general, this low resolution run was seen to

outperform GIM significantly in the equatorial region when
comparing slant TEC observations, which is not surprising
given the higher number of parameters and the departure
from a spherical-shell mapping function and its associated
error. In this work we have established a baseline perfor-
mance level against which future investigations of more
sophisticated settings and procedures can be compared.
Nondiagonal covariance, higher resolution, an improved
model of the Earth’s magnetic field, adding space-based
occultation data, adding vertical profiles from ionosondes or
incoherent scatter radar, improved physics modeling by
adding multiple ions, and improved climatological driver
estimation via Extended Kalman or 4DVAR approaches are
model features worthy of further analysis and will be the
subject of future studies.
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